Understanding privacy through the lens of contextual integrity

Helen Nissenbaum, Cornell Tech

Remarks prepared for NCVHS: Privacy, Confidentiality, and Security Perspectives on Data Collection and Use during the COVID-19 Public Health Emergency

2020 June 19

An approach to thinking about tech-assisted health surveillance **NOT** a solution.

Mobile phone enabled contact tracing merely, an illustration

or, how to avoid Trojan horses

What Apple and Google have proposed

When A and B meet, their phones exchange a key code

When A becomes infected, he updates his status in the app and gives his consent to share his key with the database

B's phone regularly downloads the database to check for matching codes. It alerts her that somebody she has been near has tested positive

Wouldn't we like to know:

- The connection between key code and phone IDs, and who knows this.
- How A's (public health authority) app is updated with COVID+ status
- Where the database sits, and what analytics can be performed by whom
- What/whose models inform the decision that B has been near enough to be alerted?
- Whether database is updated.
- Whose models can be updated ("learn") if B becomes COVID+ (or if not)
- Where processing is done: Google/Apple? App developer? Public health authorities? Governments?

Not all questions are about privacy!

```
Privacy commonly:
```

- Right to control information about ourselves
- Right to have information about ourselves withheld (secrecy)
- Above, but regarding private/sensitive information, not public

Theory of Contextual Integrity

Privacy as "Appropriate Flow"

Flow conforms with

Legitimate contextual informational norms

Key terms

Contexts: social domains {healthcare, education, politics...} Informational norms: {actors <Su,Se,Re>, i-types, transmission principles} Legitimate informational norms

Theory of Contextual Integrity

Requires flow to conform with

Legitimate contextual informational norms

- 1. Contexts: social domains {healthcare, education, politics...}
- 2. Informational norms: {actors <Su,Se,Re>, i-types, transmission principles}

3. Legitimate informational norms?

- Interests;
- Societal values;
- Contextual ends, purposes, values

Theory of Contextual Integrity

?DOES flow conform with

Legitimate contextual informational norms

- 1. Map flows in terms of 5 parameters {Su, Se, Re, i-types, TPs}
- 2. Compare with entrenched I-norms (This is an empirical question.)
- 3. Assess Legitimacy of flow vs. norm
- Interests
- Societal values
- Contextual ends, purposes, values

DOI: 10.1002/asi.24353

RESEARCH ARTICLE

Disaster privacy/privacy disaster

Madelyn R. Sanfilippo¹ Yan Shvartzshnaider^{1,2} Irwin Reyes³ 1 Helen Nissenbaum^{4,5} Serge Egelman⁶

¹Center for Information Technology Policy, Princeton University, Princeton, New Jersey

²Courant Institute of Mathematical Sciences, New York University, New York, New York

³International Computer Science Institute, University of California, Berkeley, California

⁴Digital Life Initiative, Cornell Tech, New York, New York

⁵Information Science Department, Cornell University, Ithaca, New York

⁶Department of Flectrical Engineering

Abstract

Privacy expectations during disasters differ significantly from nonemergency situations. This paper explores the actual privacy practices of popular disaster apps, highlighting location information flows. Our empirical study compares content analysis of privacy policies and government agency policies, structured by the contextual integrity framework, with static and dynamic app analysis documenting the personal data sent by 15 apps. We identify substantive gaps between regulation and guidance, privacy policies, and information flows, resulting from ambiguities and exploitation of exemptions. Results also indicate gaps between governance and practice, including the following: (a) Many apps ignore self-defined policies: (b) while some policies state they "might"

	Location Permissions			User options		
Арр				Location-services	In versus out of app	Other location
	Studied data flows for 15 Disaster apps					
MyRadar Weather Radar	Static analysis: code + permissions					
Red Cross Hurricane	V V		-			√
Red Cross Emergency	√√					V
My Earthquake Alerts	Dynamic analysis: mapped information					
My Hurricane Tracker	flower in townso of C. Deverse stows of					
Storm Tracker Weather Radar	nows in terms of 5 Parameters of					
NOAA UHD Radar & NWS Alerts	contextual informational norms utizing					
Storm Tracker: NOAA Weather Radar &	contextual informational norms, atizing					
Live GPS Maps	instrumented Android OS (<i>AppCensus</i>)					
The Weather Channel Live Maps	V V			√	V V	
Weather Underground: Forecasts	V V			V	V	
FEMA	Measu	lre	flov	vs agains	st norms: U	Itilized law
Dark Sky	& regulatory guidance; endogenous					
National Weather Service No Ad						
NOAA Weather Radar Live & Alerts	privac	v po	olici	es: surve	eved user c	comments
Global Storms	\vee \vee		V	V	√	I

Results: GAPS BETWEEN GOVERNANCE AND PRACTICE

2. Compliant with Exogenous Governance	1. Compliant
My Hurricane Tracker My Earthquake Alerts MyRadar Weather Radar Storm Tracker Weather Radar The Weather Channel Live Maps Weather Underground: Forecasts	FEMA National Weather Service No Ad NOAA UHD Radar & NWS Alerts
4. Non-compliant	3. Compliant with Endogenous Governance
Red Cross Emergency Red Cross Hurricane	Dark Sky Global Storms NOAA Weather Radar Live & Alerts Storm Tracker: NOAA Weather Radar & Live GPS Maps

What Apple and Google have proposed

When A and B meet, their phones exchange a key code

When A becomes infected, he updates his status in the app and gives his consent to share his key with the database

B's phone regularly downloads the database to check for matching codes. It alerts her that somebody she has been near has tested positive

Wouldn't we like to know:

- The connection between key code and phone IDs, and who knows this.
- How A's (public health authority) app is updated with COVID+ status
- Where the database sits, and what analytics can be performed by whom
- What/whose models inform the decision that B has been near enough to be alerted?
- Whether database is updated.
- Whose models can be updated ("learn") if B becomes COVID+ (or if not)
- Where processing is done: Google/Apple? App developer? Public health authorities? Governments?

When A and B meet, their phones exchange a key code

When A becomes infected, he updates his status in the app and gives his consent to share his key with the database


```
B's phone regularly downloads the database to check
for matching codes. It alerts her that somebody she has
been near has tested positive
```

BBC

Source: Apple/Google

Through the les of Contextual Integrity

- Map flows: demand full transparency
- Assess against LEGITIMATE norms
- Reasonable expectations
- AND: how does the data flow promote health while minimizing harms to individuals
- Consent & anonymity approaches are neither necessary nor sufficient, but can be helpful mitigations as needed.